Composition of Generalized Derivations as a Lie Derivation
نویسندگان
چکیده
Let R be a prime ring of characteristic different from 2, U the Utumi quotient ring of R, C the extended centroid of R, F and G non-zero generalized derivations of R. If the composition (FG) acts as a Lie derivation on R, then (FG) is a derivation of R and one of the following holds: 1. there exist α ∈ C and a ∈ U such that F (x) = [a, x] and G(x) = αx, for all x ∈ R; 2. G is an usual derivation of R and there exists α ∈ C such that F (x) = αx, for all x ∈ R; 3. there exist α, β ∈ C and a derivation h of R such that F (x) = αx+h(x), G(x) = βx, for all x ∈ R, and αβ+h(β) = 0. Moreover in this case h is not an inner derivation of R; 4. there exist a, c ∈ U such that F (x) = ax, G(x) = cx, for all x ∈ R, with ac = 0; 5. there exist b, q ∈ U such that F (x) = xb, G(x) = xq, for all x ∈ R, with qb = 0; 6. there exist c, q ∈ U , η, γ ∈ C such that F (x) = η(xq − cx)+ γx, G(x) = cx+ xq, for all x ∈ R, with γc − ηc′2 = −γq − ηq′2.
منابع مشابه
Lie Ideals and Generalized Derivations in Semiprime Rings
Let R be a 2-torsion free ring and L a Lie ideal of R. An additive mapping F : R ! R is called a generalized derivation on R if there exists a derivation d : R to R such that F(xy) = F(x)y + xd(y) holds for all x y in R. In the present paper we describe the action of generalized derivations satisfying several conditions on Lie ideals of semiprime rings.
متن کاملOn generalized left (alpha, beta)-derivations in rings
Let $R$ be a 2-torsion free ring and $U$ be a square closed Lie ideal of $R$. Suppose that $alpha, beta$ are automorphisms of $R$. An additive mapping $delta: R longrightarrow R$ is said to be a Jordan left $(alpha,beta)$-derivation of $R$ if $delta(x^2)=alpha(x)delta(x)+beta(x)delta(x)$ holds for all $xin R$. In this paper it is established that if $R$ admits an additive mapping $G : Rlongrigh...
متن کاملDouble derivations of n-Lie algebras
After introducing double derivations of $n$-Lie algebra $L$ we describe the relationship between the algebra $mathcal D(L)$ of double derivations and the usual derivation Lie algebra $mathcal Der(L)$. In particular, we prove that the inner derivation algebra $ad(L)$ is an ideal of the double derivation algebra $mathcal D(L)$; we also show that if $L$ is a perfect $n$-Lie algebra wit...
متن کاملLie $^*$-double derivations on Lie $C^*$-algebras
A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...
متن کاملLie higher derivations on $B(X)$
Let $X$ be a Banach space of $dim X > 2$ and $B(X)$ be the space of bounded linear operators on X. If $L : B(X)to B(X)$ be a Lie higher derivation on $B(X)$, then there exists an additive higher derivation $D$ and a linear map $tau : B(X)to FI$ vanishing at commutators $[A, B]$ for all $A, Bin B(X)$ such that $L = D + tau$.
متن کاملLie ternary $(sigma,tau,xi)$--derivations on Banach ternary algebras
Let $A$ be a Banach ternary algebra over a scalar field $Bbb R$ or $Bbb C$ and $X$ be a ternary Banach $A$--module. Let $sigma,tau$ and $xi$ be linear mappings on $A$, a linear mapping $D:(A,[~]_A)to (X,[~]_X)$ is called a Lie ternary $(sigma,tau,xi)$--derivation, if $$D([a,b,c])=[[D(a)bc]_X]_{(sigma,tau,xi)}-[[D(c)ba]_X]_{(sigma,tau,xi)}$$ for all $a,b,cin A$, where $[abc]_{(sigma,tau,xi)}=ata...
متن کامل